Exercise 7

Find the particular solution for each of the following initial value problems:

$$
u^{\prime}-u=2 x e^{x}, \quad u(0)=0
$$

Solution

This is an inhomogeneous first order linear ODE, so we can multiply both sides by the integrating factor,

$$
I(x)=e^{\int(-1) d x}=e^{-x}
$$

to solve it. The equation becomes

$$
e^{-x} u^{\prime}-e^{-x} u=2 x .
$$

Observe that the left side can be written as $\left(e^{-x} u\right)^{\prime}$ by the product rule.

$$
\frac{d}{d x}\left(e^{-x} u\right)=2 x
$$

Now integrate both sides with respect to x.

$$
e^{-x} u=x^{2}+C
$$

The general solution is thus

$$
u(x)=e^{x}\left(x^{2}+C\right)
$$

Because an initial condition is given, this constant of integration can be determined.

$$
u(0)=e^{0}(0+C)=C \quad \rightarrow \quad C=0
$$

Therefore,

$$
u(x)=x^{2} e^{x} .
$$

